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Introduction

We have worked on a wide range of topics in discrete mathematics, with such topics including
spectral graph theory [33, 35], enumerative combinatorics [34, 36, 37], and elementary number
theory [5, 39]. However, the bulk of our work lies in extremal and probabilistic combinatorics.

Broadly speaking, questions in extremal combinatorics ask how large or small a combinatorial
object can be. For example, a classical theorem of Mantel’s [22] states that every n-vertex
triangle-free graph has at most 1

4
n2 edges. More generally, Turán’s problem asks for the max-

imum number of edges that an n-vertex F -free graph can have. Many of the recent advances
towards solving special cases of Turán’s problem have used tools from other areas of mathemat-
ics, such as Galois theory, algebraic geometry, and probability. In turn, solutions to Turán’s
problem have found applications in other areas of math such as number theory, discrete geom-
etry, and coding theory.

Broadly speaking, probabilistic combinatorics studies both the application of tools from proba-
bility to solve problems in combinatorics, as well as the study of random combinatorial objects
such as random graphs and random permutations. For example, Erdős [12] used random graphs
to give the first exponential lower bound for diagonal Ramsey numbers. Since then, many tools
from probability have been used to solve longstanding open problems in combinatorics. Proba-
bilistic techniques have also been utilized together with tools from other areas of math to great
effect. For example, Bukh [4] utilized random algebraic varieties to solve Turán’s problem for
certain complete bipartite graphs. A mixture of algebraic and probabilistic methods were also
used by Keevash [20] in order to prove the existence of designs, and by Conlon and Ferber [7]
to give an exponential improvement to bounds for multicolor Ramsey numbers. All of these
results were major breakthroughs for longstanding open problems.

Below we outline some of the main subareas within extremal and probabilistic combinatorics
that we are interested in, as well as various problems within each of these subareas that we
plan to pursue.

Probabilistic Combinatorics

In addition to utilizing probabilistic tools throughout our work, within probabilistic combina-
torics we are particularly interested in studying extremal properties of random objects. For
example, we consider problems related to maximum and minimum scores in a certain card
guessing game involving a randomly shuffled deck of cards. We also consider a randomized ver-
sion of Turán’s problem, which asks for the maximum number of edges in an F -free subgrpah
of a random graph.

Card Guessing with Feedback. Consider the following one player game. We start with
a deck of mn cards which consists of n card types, each appearing with multiplicity m. For
example, a standard deck of playing cards corresponds to n = 13 and m = 4. The deck is
shuffled uniformly at random, and then the player iteratively guesses the card type of the top
card of the deck. After each guess, the top card is revealed and then discarded, with this process
repeating until the deck is depleted. This game is known as the complete feedback model. One
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can also consider the partial feedback model, where instead of being told the card type each
round, the player is only told whether their guess was correct or not. These models have been
studied extensively, in part due to their applications to clinical trials [3], casino games [13], and
many other real-life problems; see [11] for more information about applications.

Diaconis and Graham [9] determined the maximum and minimum expected number of cor-
rect guesses that a player can make in the complete feedback model. Further, they showed
that the intuitive strategies “guess a most/least likely card type each round” give the maxi-
mum/minimum number of expected correct guesses.

The analogous problems for partial feedback are harder. This is because the strategies which
achieve the maximum and minimums are unknown. Further, it is known that under partial
feedback, the intuitive strategies “guess a most/least likely card type each round” do not achieve
the maximum/minimum in general. Both the maximum and minimum problems remained open
for nearly 40 years, but recently we essentially solved the maximum problem together with
Diaconis, Graham and He:

Theorem 1 (Diaconis, Graham, He, S. [10]). There exists an absolute constant C > 0 such
that if n is sufficiently large in terms of m, then the expected number of correct guesses made
in the partial feedback model is at most m + Cm3/4 logm regardless of the strategy used by the
player.

This bound is essentially best possible, as the player can guarantee m correct guess by guessing
the same card type every round. The main obstacle in proving Theorem 1 was that the optimal
strategies for this game are not known. We overcame this difficulty by using novel probabilistic
arguments, as well as enumeration results which bound the number of permutations which have
restricted entries.

Theorem 1 shows that the player cannot use partial feedback to get significantly more that m
correct guesses, and we believe a similar phenomenon occurs when the player tries to minimize
the number of correct guesses:

Problem 1. Show that there exists an absolute constant c > 0 such that if n is sufficiently
large in terms of m, then the expected number of correct guesses made in the partial feedback
model is at least cm regardless of the strategy used by the player.

The only lower bound for the expected number of correct guesses is due to Diaconis, Graham,
and ourselves [11] who proved a lower bound of 1

2
, which is far from the conjectured value given

in Problem 1.

The models we have described use decks which are shuffled uniformly at random, and it is
natural to consider other ways of shuffling the deck. Results in this direction have been obtained
for riffle shuffles [6, 21] and top to random shuffles [28]. Recently, we [38] considered the complete
feedback model when the deck is shuffled “adversarially”, i.e. in such a way that the maximum
expected number of correct guesses that the player can obtain is minimized. We solved this
problem in [38], and it is natural to consider the analogous problem under partial feedback:

Problem 2. Determine the maximum expected number of correct guesses the player can make
in the partial feedback model when the deck is shuffled adversarially.
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F -free Subgraphs of Random Hypergraphs. Szemerédi [43] famously proved that any
dense subset of the integers contains arbitrarily long arithmetic progressions. Building on this,
Green and Tao [16] proved that any large subset of a “psuedorandom” set of integers contains
arbitrarily long progressions, which they used to prove that the primes contain arbitrarily long
progressions. In a similar spirit, it was asked when the random set [n]p, which is defined by
including each of the first n integers {1, 2, . . . , n} independently and with probability p, is such
that any dense subset of [n]p contains a k-term arithmetic progression with high probability.
This problem was solved in breakthrough work by Conlon and Gowers [8] and Schacht [32].
The methods used in [8, 32] extend to many other probabilistic versions of classical problems,
and one particular such problem that we are interested in is the problem of finding large F -free
subgraphs of (random) graphs, and more generally of hypergraphs.

A hypergraph H is a set of vertices V together with a set E of subsets of V called hyperedges.
A hypergraph is said to be r-uniform or an r-graph if every hyperedge has size exactly r. For
example, the definition of a 2-graph is equivalent to the definition of a graph, and thus r-graphs
can be viewed as a natural generalization of graphs. We define the random r-graph Gr

n,p to
be the r-graph on n vertices obtained by including each possible hyperedge independently and
with probability p. For example, G2

n,1 is the complete graph Kn since each possible edge is
included with probability 1.

Given an r-graph F , we say that an r-graph H is F -free if H does not contain a subgraph
isomorphic to F . Let ex(Gr

n,p, F ) denote the maximum number of edges of an F -free subgraph
of Gr

n,p. For example, when p = 1, the (deterministic) function ex(Gr
n,1, F ) is the maximum

number of hyperedges that an F -free r-graph on n vertices can have, which is exactly Turán’s
problem. Thus determining ex(Gr

n,p, F ) can be viewed as a probabilistic analog to Turán’s
problem.

Problem 3. Determine E[ex(Gr
n,p, F )] for r-graphs F .

Problem 3 has been essentially solved if F is not an r-partite r-graph due to independent work
of Conlon and Gowers [8] and Schacht [32], but only sporadic results are known when F is an
r-partite r-graph. One natural class of r-partite r-graphs to consider are complete r-partite
r-graphs, and in this setting we proved the following1 result with with Verstraëte:

Theorem 2 (S., Verstraëte [42]). Let Kr
s1,...,sr

denote the complete r-partite r-graph with parts
of sizes s1, . . . , sr. There exist constants β1, β2, β3, γ depending on s1, . . . , sr such that, for sr
sufficiently large in terms of s1, . . . , sr−1, we have

E[ex(Gr
n,p, K

r
s1,...,sr

)] =


Θ (pnr) 0 ≤ p ≤ n−β1 ,

nr−β1+o(1) n−β1 ≤ p ≤ n−β2(log n)γ,

Θ(p1−β3nr−β3) n−β2(log n)γ ≤ p ≤ 1.

This generalizes results of Morris and Saxton [25] when r = 2. We proved similar results with
Verstraëte [40] and with Nie and Verstraëte [26] when avoiding Berge cycles and loose triangles
in random hypergraphs.

1Throughout the text we use standard asymptotic notation: O(f(x)) (respectively Ω(f(x))) denotes a func-
tion which is at most (respectively at least) c · f(x) for some constant c > 0, Θ(f(x)) denotes a function which
is both O(f(x)) and Ω(f(x)), and o(f(x)) denotes a function which tends to 0 as x tends to infinity.
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Extremal Combinatorics

Within extremal combinatorics, we are particularly interested in studying problems related to
F -free graphs and hypergraphs. These include variants of Turán’s problem, as well as newer
problems such as counting maximal independent sets in Kt-free graphs.

F -free Subgraphs of General Hypergraphs If H and F are r-uniform hypergraphs, we
define the relative Turán number ex(H,F ) to be the maximum number of edges amongst all
F -free subgraphs of H. Note that when H is Kr

n, the complete r-uniform hypergraph on n
vertices, then ex(Kr

n, F ) denotes the maximum number of edges that an F -free r-graph on n
vertices can have. Because of its importance, we write ex(n, F ) := ex(Kr

n, F ) and call this the
Turán number of F .

In the previous section we discussed relative Turán numbers when H is a random hypergraph.
In this section we consider ex(H,F ) for general hypergraphs. In particular, we wish to bound
ex(H,F ) in terms of parameters of H. One particular problem of this form is the following:

Problem 4. Given an r-graph F , determine lower bounds for ex(H,F ) in terms of the number
of edges of H and the maximum degree of H.

One such result was proven by Perarnau and Reed [29]: for any graph G with maximum degree
at most ∆,

ex(G,Ka,b) = Ω

(
ex(∆, Ka,b)

∆2

)
· e(G), (1)

where Ka,b is the complete bipartite graph with parts of sizes a and b, and e(G) denotes the
number of edges of G. We note that this result is essentially best possible because G = K∆ has
maximum degree at most ∆ and satisfies

ex(G,Ka,b) = ex(∆, Ka,b) ≈ ex(∆, Ka,b) ·
e(G)

∆2
.

Surprisingly, the bound (1) holds despite the fact that the order of magnitude of ex(∆, Ka,b) is
unknown for most values of a and b. In order to generalize (1), the following was essentially
conjectured by Foucaud, Krivelevich, and Perarnau [14]:

Conjecture 3. If F and G are graphs such that G has maximum degree at most ∆, then

ex(G,F ) = Ω
(ex(∆, F )

∆2

)
· e(G).

One might naively conjecture that an analogous statement holds for r-uniform hypergraphs,
namely that

ex(H,F ) = Ω
(ex(∆1/(r−1), F )

∆r/(r−1)

)
· e(H),

since a clique H = Kr
n with n ≈ ∆1/(r−1) once again shows that such a bound would be best

possible. With Verstraëte [42], we proved that this naive conjecture for hypergrpahs is very
false, even for hypergraph analogs of Ka,b.
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Theorem 4 (S., Verstraëte [42]). Let K3
a,b,c be the complete 3-partite 3-uniform hypergraph with

parts of sizes a ≤ b ≤ c. There exists a 3-uniform hypergraph H with maximum degree ∆ such
that

ex(H,Ka,b,c) = O(∆
−1

ab+a ) · e(H).

Moreover, if b is sufficiently large in terms of a, and if c is sufficiently large in terms of b, then
for all 3-uniform hypergraphs H of maximum degree at most ∆, we have

ex(H,Ka,b,c) ≥ ∆
−1

ab+a
−o(1) · e(H).

We emphasize that these bounds are in general not what one gets by considering H = K3
n,

since in this case it is conjectured that we have ex(K3
n, Ka,b,c) = Θ(n3− 1

ab ) = Θ(∆
−1
2ab ) · e(K3

n).
Thus the natural analog of (1) fails for 3-uniform hypergraphs. A generalization of Theorem 4
for complete r-partite r-graphs is also proven in [42].

We have proven analogs of Theorem 4 for other hypergraphs F . For example, with Ver-
straëte [41, 42] and Nie and Verstraëte [26], we have proven such bounds for various families of
hypergraph cycles, with these including loose cycles, Berge cycles, and tight cycles.

Maximal Independent Sets in Clique-free Graphs. Given a graph G, a subset of vertices
I is called a maximal independent set (or MIS for short), if I is an independent set and if every
vertex v /∈ I has a neighbor in I (that is, if I ∪ {v} is not an independent set for any v /∈ I).
A large body of literature is dedicated to MIS’s, in part due to applications to areas such as
bioinformatics [31] and computer vision [18].

Miller and Muller [23] and Moon and Moser [24] independently proved that if n is a multiple
of 3, then every n-vertex graph has at most 3n/3 MIS’s, and this bound can be seen to be best
possible by considering a disjoint union of triangles. Given this, it is natural to ask how many
MIS’s a graph G can have if it is “far” from a disjoint union of triangles. For example, Hujter
and Tuza [19] showed that if n is even, then every n-vertex triangle-free graph has at most 2n/2

MIS’s, and this bound is best possible by considering a disjoint union of edges. This latter
result has found numerous applications: it was used by Balogh and Petř́ıčková [2] to determine
the number of maximal triangle-free graphs on n vertices, and by Balogh, Liu, Sharifzadeh, and
Treglown [1] to count the number of maximal sum-free subsets of the first n integers.

Nielsen [27] determined that the maximum number of MIS’s of a given size k that an n-vertex
graph can have is asymptotic to (n/k)k, with the extremal construction being k disjoint cliques
with sizes as close to n/k as possible. Again it is natural to consider what happens for graphs
which are “far” from a disjoint union of cliques. In this spirit, we proved the following with He
and Nie:

Theorem 5 (He, Nie, S. [17]). Let mt(n, k) denote the maximum number of MIS’s of size k
that an n-vertex Kt-free graph can have. For any fixed k ≥ 2(t− 1), we have

mt(n, k) ≥ n
(t−2)k
t−1

−o(1).

Our constructions involved certain blowups of hypergraphs related to a famous construction
to Ruzsa and Szemerédi [30], as well as to a recent generalization of [30] due to Gowers and
Janzer [15]. We believe that these constructions are essentially best possible:
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Conjecture 6 (He, Nie, S. [17]). For k ≥ 2(t − 1), there exists a constant C depending on k
such that

mt(n, k) ≤ Cn
(t−2)k
t−1 .

In [17] we showed that this conjecture is true for t = 3 and k = 4, but beyond this the
problem is wide open. In [17] we showed that many different constructions achieve the lower
bound of Theorem 5, which suggests that proving Conjecture 6 may be difficult. In addition
to Conjecture 6, we are interested in studying how mt(n, k) behaves when k grows with n, as
well as exploring analogous problems for hypergraphs.
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